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| discuss two applications from my own experience of the use of computer
algebra software packages to mathematics. The first is concerned with finding
a closed formula for an expression | came across in finite geometry, the
second deals with compiling and solving a set of polynomial equations in order
to establish the existence of a particular finite subgroup of the complex Lie

group of type Eg.
Software packages for math emaﬂcs are becomisi

g more widely avail
nould not expect the m to

more ef fectwely Eh an 1S pos-
geb ra syste ms will play an 1m portant
h, such as 1° testing (instances of)
and 2° provin g explicit results

m p licated to be pcr—

E. For other mteres

an | have, see [4]. M
gebra software system can be of use 1n
din ed form an expression determined by recursion, the second
how an existence proof can be given for a subgroup of a Lie group that has
hitherto not been established otherwise.

1. FINDING A CLOSED FORMULA
Before going into the example itself, let me display the strategy by a com-
pletely trivial example: suppose we wish to find a closed formula for the

geometric progression
1 +x +x*2+ --- + x"

If we refer to this expressmn as geom (x,n), it will be clear that it is given by

the following MA
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| 1f n < O then 0
else geom(x, n—1)+x"n fi

rial and error we have come to the conclusion
he follow Nng CEOS ed form
n-+1

that, for x 2 1,
1 — x
1 — x

1S a smtabie candidate for geom(x, n) Denote it by geomapp (x,n) (the suffix
YT t211 Aeaal; appro ximation at this Stage)

geomapp ( n)
(1 -x"(m+1))/(1 - x)
end:

So far, there 1s hardly a noticeable difference with
formed :

ordinary computer pro-
ary languages a check of the following nature would be per-

for i to 2 do print (geomapp (2,i)); print(geom(2,i))
od;

giving output 3 3 7 7. Now symbolic computation manifests itself through the
presence of the variable x: the command

geom(x,3);
and the command
normal(geomapp(x,3));
both yield
l + x + x* + x3.
Of course there are linitations; the command
geom(X,n);
triggers the response

Error, (1n geom) cannot evaluate boolean

We now come to the actual example based on the same idea. The analog of
geom 1s a recursively defined formula, called a(n,m,j,/,k,e), counting objects
from a certain finite geometry (a polar space) determined by the parameters »
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he parameters j, k, and /) with

he properties laid d

rmine a (n N4

gaussq(n,k)=T]4—
i=1 g —1

k
polargaussq(n,k,e)=gaussq(n,k) | |

MAPLE language, for the g-Bin
gaussq : = proc(nk)

mial coefficient gaussq:

EOC al aﬂSW, H'é
answ .= 1;:
if (k > n) then answ := 0 {i;
if k <= n then
for kk to k do
answ : = answ*(q (n - kk

+ 1D -1)/

od
f1;
answ
end:

and, for the ‘polar varation’ polargaussq:

1. The polar space of a quadric of rank n is an incidence system derived from a nondegenerate
quadratic form on a vector space V of Witt index n. A point of this incidence system 1s a 1-
dimensional subspace contained in ¥ on which the quadratic form vanishes; more generally, a
singular subspace of the polar space (of rank m) is an m + 1-dimensional subspace of V' on which
the form vanishes identically. We shall be concerned with the case where the ambient vector space
V is finite, whence defined over a finite field of order, say ¢. Then the dimension of V' is either 2n
or 2n +1. Let e be 0 or 1 depending on whether ¥ has even or odd dimension. (The reason for 1n-
corporating e is that there are more polar spaces, left out of the present discussion for the sake of
exposition, see [loc cit].) Now let x be a fixed singular subspace of our polar space of dimension
m. Then a(n,m,j,!,k,e) stands for the number of (k +/+ j)-dimensional spaces y with

dim (xNy)=; and dim (x—Ny)=j +/,
where L denotes the usual orthogonal space in ¥ with respect to the given quadratic form.
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Now we are in a position to describe - using MAPL]

from 0 to k-1 do 1

fi;

end:

- the function a as deter-

mined from geometric observations.

Going over the reductions and expern

pI'C (n 1
Eocal u, 1} answ;

else

if and >0) then answ = a(n - j,m - j,0,Lk.e)* gaussq(m,j) fi

f = Oank Oandl 0 then answ := 1 fi
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a(anlOe)*a(n-lmOOke)ﬁ

1f3 Oa.ndl 0andk>0then
= polargaussq(n,k,e);
for ij to k do
answ : = normal(answ - a(n,m,11,0,k - 11,e))

od;
for 1 from O to k do
for jfrom 1 tok - n do
answ : = norma3

.- ASW - a(n,m,,,k - 1 - jj’e))
od;

nenting a little interactively, I got the
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will refer as

a(1,2,3,4,5,6);

>
a(12,3,1,1,1,1);
q (@ +q+1)(q +q +q +q +q +q +q +q+1) (q +1) (@+1)
=
aapp(12,3,1,1,1,1);
20 2 8 7 6 S 4 3 2 9

q (qQq +q+1) (q +q +q +q +q +q +q +q+1) (q
>

a(6,2,1,1,1,0):

+ 1) (q+ 1)

7 3 2 3
q Q+1)(q +q +q+1) (q +1)

aapp(6,2,1,1,1,0);
7 3 2 3

q (Q+1) (q +q +q+1) (@q +1)

AR > . 2 ° 1 y 0 ’ 1 ’ 1) )

7

q @+1D)
>
a(5,2,1,0,1,1);
7
q Q+1)
[hus, a good hypothetical formula has been found much quicker than by con-
ventional methods. Now it is not too hard to provide a proof that the formula

given in aapp 1s the right one, 1.e., that
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a (H 9

9j$ za k,f)::

gaussq (»

En {aC€ ’ SUuc & D I OOf carli

,]) - polargaussq(n —m,l.e) -
"'“j,k) . ql(m ~NHQRn—D—j—m+te—1k —k(k—1)/2)

2. SOLVING A SET OF POLYNOMIAI
We shall now be concerned with a proof of a m
hard to establish without a lot of computation:

The fractional linear group L=1L(2,19) over the field Z/19Z of 19 elements of
order 3420 embeds in the complex Lie group E of type Eg.

In [2], it turns out that L is one of the few nonabelian finite sin groups for
which an ding in E exists. The discussion below reports on the construc-
tion given in [loc cit]. For ‘easier’ (e.g. nilpotent) groups, there are criteria that
make it relatively straightforward to decide whether or not they are subgroups
. The strategy of the construction of an embedding of L in E 1s to first
construct an embedding of an easier group (namely the one of order 171 gen-
ed by the elements u and 7 given below), and next to search for a suitable
element (in fact the element w below) in E such that the easier group together
with w generate the required group L. At this second stage, straightforward
numerical work enables us to find w as a 27 by 27 matrix whose entries are
polynomials with 6 indeterminates. From there on, we make essential use of
the features of a computer algebra package to find appropriate values for the
indeterminates, which upon substitution in the entries of w, turn w into the
required element of E.
To embed L, we use the observation that L is the unique nontrivial group

generated by two elements u and w satisfying the following relations

EQUATIONS TO EMBED A FINITE GROUP IN

19 =2 =

(uw)® =(w?w)?’ =1.

Using the well-known presentation of L =L(2,19) as the set of pairs {a, — a}
ofnonsingular 2 by 2 - matrices a, the elements u and w of L correspond to

0 1 11 |
10| ad | g1 respectively.

The complex Lie group E of type E¢ is regarded as a set of 27 by 27 matrices.
To be precise E will be taken to be the set of all invertible 27 by 27 matrices
preserving the cubic form F on C*’ given by

F(xh <a<z= det (x{P) + det (xP) + det (x{’) — trace (x{)(x{P)xiy),

where x{ (1 <ij,k <3) stands for x, with a=i + 3(j —1)+9k —1).
Details will appear in joint work with D.B. Wales [loc cit]. Rather than in the
complex Lie group, we shall embed L in a finite counterpart of E, namely the
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over Z/19Z has dia gon al shape on (Z/ 6 3412 )2’7 with respect to a very SP¢ ecial

means of elaborate 7-eigenspace con putauons in the sam
we do not discuss them here as they are of a numerical natum}
that w has a pretty shape: 1ts 27 rows are:

[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,264z¢/ a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,596a/ ze,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
10,0,0,0,0,0,0,0,0,863a°b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,2079abze, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,1263ybae + 5854xyaz +987az,0,0,0,0,0,0,0,0,

087xaz +5578bae, 0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6705a4, 0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5142¢z,0,0,0,0,0,0}
[0,0,0,0,0,0,0,0,0,0,987ybae +915xyaz +5926az,0,0,0,0,0,0,0,0,

5926xaz + 5854bae, 0,0,0,0,0,0,0]
[0,0,0,1086/(a*b),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,6840(3609¢b +6236xz)/ (zeab),0,0,

4(808yeb + 1559z +5282xyz)/ (zeab),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,4202/ (baze),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,6839a (2321xz +956¢b) / (ze¢),0,0,

2a(2321z +4520xyz +5885yeb)/ (ze),0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,(3418yeb +2155xyz +4686z)/(ab),0,0,0,0,0,0,0,0,

6840,(3418eb +2155xz)/ (ab),0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2806 / (ab),0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6837(432¢b +4'Ixz)/ (zeb),0,0,

447z +6794xyz + 6409yeb)/ (zeb))
[0,0,0,0,0,0,0,0,0,0,0,0,0,5(6410yeb +349xyz +6492z)/(ba),0,0,0,0,0,0,0,0,

6836(6410eb +349xz)/(ba),0,0,0,0]
[0,0,0,0,0,0,3672/4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,6840(5321eb +360,9xz)/ (abze),0,0,
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10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6839(745¢b +864xz) / (zeb),0,0,
144(12z +6829xyz +2365yeb)/ (zeb)]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,949xyz + 5892z +5375yeb,0,0,0,0,0,0,0,0,
5892xz + 1466eb, 0}

for certain a,b,e,z,x,y EZ/6841Z. At this stage, we know that each nonzero
choice of a,b,e,z,x,y leads to an element of E. But which choice leads to a
equired [his problem is solved by use of the
» L must have when it atcs as a subgroup of E on C*'.
it must be the character 9, + 18, (up to
algebraic conjugacy) in the notation of the ATLAS [3]. Taking values m odulo
6841, this determines the trace of the matrix u’w for each i (0 < i < 18).

equating trace (u'w) to this value gives the identity 3=23 (rows 1,13,
and 25 contribute 1 each), but for i =1, 1t gives:

3989a + 6490ez +3961a2b +4521abze +2974a*be +

8123a%bze + 1847 xaz + 1324xz%ae +3891a° bz +6460bae +

435aez +6326xa%z +4231xz2a%be +184a°b%e +28a*bz’e +

1182z2ae + 128a2be?z2 +1693yb%a’e?z +4316a°z%be +4011xa’z*be +

338az +2525xya’z% be +4436ye*abz +5659xyz2ae +6508¢abz +
4559¢2b2q2z +6225yeba?z +6813xyz2atbe +2493a%b?ez +1278a°b%e*z +
1019a%b2ez +2855a3bez +2504ybae +1245a°b*z%e” +2080yba’e +

1613a3b +2950a3 xybz +6503xpaz +2199xya’z +2638e*z°ba +

4642a2z +4193a3 xbz +2392a’yb*e

= 0.

In the subsequent 17 equations, i.e., those for =2, ---,18, the sam
als occur. To exploit this phenomenon, I used Gauss eliminatz
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with a first version of

local aa, bb cl,ee, z.z xx,yy 1, cb __

. , L Yy = degree(t,y)
coeftayl(eqs[prese_rve] [a, b e,z,X,y] =1[0,0,0,0,0,0],

[aa,bb,ee,zz,xx,yy]) mod p;

if cb = 0 then print(‘error cb = ()
else for 1 to 19 do
if 1 < > preserve then
c1: = coeftayl(eqs[i],
[a,b,e,z2,x,y]=[0,0,0,0,0,0],
[aa,bb,ee,zz,xx,yy]) mod p;
eqs[i]: = *
(cb*eqs[1}-c1*eqgs[preserve])
mod p
fi
od
f1;
end:

I'he crucial MAPLE session consisted of running repeatedly and interactively
the routine gauss with ‘hand picked’ row numbers ¢+ and monomials preserve in
order to decrease the number of monomials in each equation (this number is
43 1n the above equation for i=1). This resulted in fairly simple equations,
which by use of standard commands in MAPLE, enabled me to find the fol-
solution: a=1492; b=631; e=2146; x=4372; y=1744; z=3818.
Finally, a check that

=@uw) =(u?w)" =1

established that the elements ¥ and w generate a subgroup of £ isomorphic to
L. The point to be made here is that the computations were too cumbersome
to be done by hand. Note that, apart from verification of the relations on

and w, all that is actually needed for the proof that L embeds in E is to verify
that the 27 by 27 matrices over Z/6841Z found for u and w (i.e., the one
obtained by substuting the values for a,b,e,x,y,z in the matrix for w whose
rows are given above) indeed preserve the form F (that is, the version over

Z/68414); this 1s straightforward, but extremely tedious to verify by hand.
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